
Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 A47

(http://iopscience.iop.org/0953-8984/12/8A/306)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 11:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/8A
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) A47–A56. Printed in the UK PII: S0953-8984(00)06911-3
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Abstract. A system of smooth hard spheres with inelastic collisions is considered as an idealized
model to describe rapid granular flow. A non-equilibrium statistical mechanics is formulated for
this system, analogous to that for elastic collisions. The associated Liouville equation provides
the basis for application of many-body methods such as linear response, kinetic theory, and the
derivation of macroscopic hydrodynamic equations. These methods are illustrated for the simplest
case of self-diffusion. A Green–Kubo expression for the self-diffusion coefficient is derived and
evaluated using an approximate linear kinetic theory. Other recent applications of kinetic theory
and kinetic models are reviewed briefly.

1. Introduction

Granular systems have attracted the attention of the physics community in recent years [1], in
part because such systems exhibit flow which is strikingly similar to that for normal fluids
under many conditions. These conditions include rapid, dilute flow where the dominant
transfer of momentum and energy is via successive hard binary collisions of the constituent
particles. An important characteristic of such collisions is the loss of kinetic energy. The
discussion here will focus on the objective of understanding only the effects of such collisional
dissipation by isolating it from other important properties of granular media in an idealized
model. Consequently, a successful analysis of the model will not provide a good description of
all experiments but it can provide a more complete identification of which qualitative features
can be attributed primarily to dissipation. In fact, it is remarkable that there is so much
correspondence with real systems in the applications to date.

The idealized model is a system of smooth, hard spheres with inelastic collisions. The
collisions are specified in the usual way in terms of the change in relative velocity at contact, but
with a decrease in the magnitude of the normal component measured by a positive restitution
coefficient, α � 1. The hard-sphere system with elastic collisions has been studied extensively
for both equilibrium and non-equilibrium statistical mechanics, using molecular dynamics
simulation and many-body methods. It is tempting to apply these same methods for the case
of inelastic collisions and that is indeed what many in the physics community have been
attempting during the past five years. Much of the most interesting new information has been
obtained by molecular dynamics simulation. The emphasis here will be on complementary
theoretical methods being developed and attempts to provide the context for a fluid dynamics
description. This brief account is a personal perspective based on the author’s work and that
of his collaborators; no attempt is made to include the extensive related work of many others
in this field.
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The starting point is a discussion of the non-equilibrium statistical mechanics for this
system to indicate the potential for application of a range of known many-body methods [2].
Subsequently, only a flavour of such applications is provided through a discussion of self-
diffusion as the simplest test for hydrodynamics. A more complete description of linear
response methods is in progress. Finally, some of the current results from kinetic theory are
summarized, including the use of kinetic models for states far from the reference homogeneous
state.

2. Statistical mechanics

The system considered is composed of N smooth hard spheres of diameter σ . Their motion
consists of free streaming until a given pair i, j is in contact, at which point their relative
velocity changes instantaneously according to the inelastic collision rule

g̃ij = gij − (1 + α)σ̂(gij · σ̂). (2.1)

Here gij = vi − vj is the relative velocity for particles i and j , and α is the restitution
coefficient with values in the range 0 < α � 1 measuring the degree of inelasticity.
The special case of elastic spheres is given by α = 1. The centre-of-mass velocity is
unchanged so the total mass and momentum of the pair is conserved. However, there is
an energy loss of Ẽ − E = −(1 − α2)m(g · σ̂)2/4 for each collision. The state of the
system at time t is completely characterized by the positions and velocities of all spheres
at that time and is represented by a point in the associated 6N -dimensional phase space,
�t ≡ {q1(t), . . . , qN(t), v1(t), . . . , vN(t)}. The sequence of free streaming and binary
collisions determines uniquely these positions and velocities of the spheres at time t for given
initial conditions at t ′ ≺ t . A more complete notation expressing this dependence on initial
conditions is �t(�t ′). Thus, just as in the case of elastic collisions the microdynamics for this
system corresponds to a deterministic trajectory in phase space. Observables of interest are
represented by the same phase functions as for elastic collisions,A(�(t, �)), and their average
for given statistical initial data at t = 0 is defined by

〈A(t)〉 ≡
∫

d�0 ρ(�0)A(�t (�0)) (2.2)

where ρ(�0) is the probability density or ensemble for the initial state, normalized to unity. An
equivalent representation of this average is obtained by changing variables to integrate over �t
rather than over �0. This change of variables is possible since trajectories in phase space do
not cross, and �0 can be expressed in terms of �t denoted by �−1

t (�t ). Then (2.2) becomes

〈A(t)〉 =
∫

d�t J (�0, �t )ρ(�
−1
t (�t ))A(�t ) ≡

∫
d� ρ(�, t)A(�) (2.3)

where J (�0, �t ) is the Jacobian of the transformation. The second equality of (2.3) describes
the time evolution through that of the phase-space probability density defined by ρ(�, t) ≡
J (�−1

t (�), �)ρ(�−1
t (�)).

For practical purposes it is useful to identify the generators L and L for the two
representations, defined by

A(t) ≡ eLtA(�) ρ(�, t) = e−Ltρ(�). (2.4)

These are not the usual generators of Hamilton’s equations for continuous forces and are
somewhat more complex due to the singular nature of hard spheres. Such generators have been
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discussed in detail for the case of elastic collisions and the analysis extends quite naturally to
the inelastic case as well [2], with the results

L =
N∑
i=1

vi · ∇i +
1

2

N∑
i=1

N∑
j 
=i

T (i, j) L =
N∑
i=1

vi · ∇i − 1

2

N∑
i=1

N∑
j 
=i

T (i, j). (2.5)

The first terms on the right-hand sides generate free streaming while the second terms describe
velocity changes. The two binary collision operators, T (i, j) and T (i, j), for particles i and
j are given by

T (i, j) = −σ 2
∫

d� �(−gij · σ̂)(gij · σ̂)δ(qij − σ)(b − 1) (2.6)

T (i, j) = σ 2
∫

d� �(gij · σ̂)(gij · σ̂)[α−2δ(qij − σ)b−1 − δ(qij + σ)] (2.7)

where d� denotes the solid-angle integration for the unit vector σ̂, r is the relative position
vector of the two particles, and the operator b is a substitution operator, bF(gij ) = F(bgij ),
which changes the relative velocity gij = vi − vj into its scattered velocity according to,
equation (2.3), bgij = g̃ij .

In terms of this representation for the dynamics, the Liouville equation for the N -particle
distribution, ρ(�, t), is

(∂t + L)ρ(�, t) = 0. (2.8)

Similarly, the BBGKY hierarchy for the reduced distribution functions is obtained by partial
integration of the Liouville equation over N − l degrees of freedom:

(∂t + L(x1, . . . , xl))f
(l)(x1, . . . , xl, t) =

l∑
i=1

∫
dxl+1 T (i, l + 1)f (l+1)(x1, . . . , xl+1, t) (2.9)

f (l)(x1, . . . , xl, t) ≡ Nl

∫
dxl+1 · · · dxN ρ({qi , vi}, t) (2.10)

where xα = {qi , vi} denotes the position and velocity for particle i and L(x1, . . . , xl) is the
Liouville operator for a system of l particles.

The loss of energy on each binary collision implies a corresponding decrease in the average
velocity for each particle in the absence of external driving forces. A characteristic average
velocity is defined in terms of the kinetic energy per particle by v2

0(t) ≡ 2
〈∑

i v
2
i (t)

〉
/3N . This

definition is chosen such that v0 becomes the familiar thermal velocity for the case of elastic
collisions. Its time dependence can be calculated from (2.3) using the Liouville equation and
the explicit form of L:

∂t ln(v0(t)) = −vc(t)ω∗(t) vc(t) ≡ nπσ 2v0(t). (2.11)

where vcω∗ gives the slowing rate of the particles due to inelastic collisions. It is proportional
to the collision frequency vc(t) ≡ nπσ 2v0(t). The remaining dimensionless factor ω∗(t)
depends on the degree of dissipation through the factor 1 − α2, and the two-particle reduced
distribution function at contact:

ω∗(t) = (1 − α2)
1

6v3
0(t)

∫
dv1 dv2 f

(2)(r12 = σ, v1, v2, t)g
3
12. (2.12)

The collisional decrease in velocities will be referred to as ‘cooling’, by analogy to the elastic
case where the thermal velocity is proportional to the square root of the temperature. This
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effect can be made explicit by introducing the generator for velocity scaling in the Liouville
equation:

(∂t + L)ρ +
∑
i=1

∇ui · (Fiρ) = 0 Lρ = Lρ −
∑
i=1

∇vi · (Fiρ) (2.13)

where Fi = −vc(t)ω∗(t)vi . This trivial rearrangement leads to an interesting interpretation for
the dominant effects of inelasticity. It is easily shown that the new generator L does not change
the total kinetic energy and in this respect is similar to that in the case of elastic collisions.
Instead, the cooling effect is now represented by an effective Stokes law drag force Fi on
each particle with friction constant vc(t)ω∗(t). This representation is particularly instructive
for steady shear flow where this drag force acts as an internal thermostat to control viscous
heating, allowing close analogy to studies of shear flow for elastic collisions using an externally
imposed thermostat for steady states.

The above is a brief and formal description of the tools for application of non-equilibrium
statistical mechanics to this system of inelastic hard spheres. Clearly the analogy with the
usual statistical mechanics of elastic collisions is close at this operational level. However, the
justification for use of the average properties obtained in non-equilibrium statistical mechanics
relies of subtle concepts such as mixing which may not have the same implications for systems
with inelastic collisions. On the other hand, many of the new features of the latter are similar
to those of open systems with elastic collisions (e.g., those driven by non-conservative forces).
The approach here is to assume that the usual qualitative properties necessary for statistical
mechanics remain valid, and to probe such questions in the context of specific applications for
comparison with molecular dynamics and other simulation experiments.

3. Homogeneous cooling state

The average velocity, the collision frequency, and the mean free path & ≡ 1/πnσ 2 can be used
to define the appropriate dimensionless variables for analysis:

s(t, t ′) ≡
∫ t

t ′
dτ vc(τ ) ui = v/v0(t) ri = qi/& (3.1)

ρ(�, t) = (&v0)
−3Nρ∗ f (l) = (&v0)

−lf (l)∗ L = vc(t)L
∗
. (3.2)

It is easily verified that the generator L
∗

is time independent and has the same form as L in
the new variables. The dimensionless Liouville equation becomes

(∂s + L∗)ρ∗ = 0 L∗ρ∗ ≡ L
∗
ρ∗ −

∑
i=1

∇ui · (F ∗
i ρ

∗) (3.3)

with F ∗
i = −ω∗(t)ui .

For an isolated system there is no stationary solution to the Liouville equation (2.8) for
ρ. However, the additional terms F ∗

i from the velocity scaling in (3.3) admit the possibility
of a stationary solution for ρ∗ in the dimensionless variables. Such a solution is characterized
by ∂sρ∗ = 0. It is readily seen that this implies that ω∗(t) is time independent. This is a
scaling solution in which all the time dependence of ρ occurs only through the scaling of
the velocity and its normalization. The detailed velocity dependence is determined by the
stationary dimensionless Liouville equation

L∗ρ∗
hcs = 0. (3.4)

As discussed above, the operator L∗ differs from L
∗

by the generator for scale transformations
that increase the velocity. Thus the stationary solution is obtained as a balance between velocity
decreasing due to inelastic collisions and this scale transformation. Such a solution is known
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as the homogeneous cooling state (HCS), where the additional assumptions of rotational and
translational invariance are implied. It is the analogue of the Gibbs state for elastic collisions
and reduces to it for α = 1; for α ≺ 1 the exact solution is not known (it is not simply the
Gibbs state with time-dependent velocity scaling).

Some interesting consequences follow from the velocity scaling of the HCS. Since ω∗(t)
becomes time independent, equation (2.11) can be integrated for the explicit time dependence
of v0(t) and the relationship of s to t :

v0(t) = v0(t
′)

[
1 + ω∗vc(t ′)(t − t ′)

]−1 = v0(t
′)e−ω∗s(t,t ′) (3.5)

s(t, t ′) = ω∗−1 ln
[
1 + ω∗vc(t ′)(t − t ′)

]
. (3.6)

The velocity decrease is algebraic in real time. This time is logarithmically stretched by the
dimensionless time s, so the decay becomes exponential, as indicated in the last equality
of (3.5). It is important to recognize that ω∗ ∝ (1 − α2) with the result that for weak
inelasticity there is a crossover from a logarithmic to a linear relationship between the two times.
Knowledge of the time dependence of v0(t) also implies that for many average properties.
For example, if A(t) is a homogeneous function of the velocity, A({xv1(t), . . . , xvN(t)}) =
xpA({v1(t), . . . , vN(t)}), then its average value in the homogeneous cooling state is

〈A(t)〉 = v
p

0 (t)

∫
d� ρ∗

hcs(�)A
∗(�) (3.7)

where A∗ denotes A in terms of the dimensionless velocities. Similarly, fluctuations and
time correlation functions for this state have a corresponding simplification. At this point it is
appropriate to recognize that there is convincing evidence from both theory and simulation that
the HCS is unstable against small spatial perturbations and spontaneous fluctuations. Thus any
analysis based on averages in the HCS must be qualified by an appropriate timescale which is
short compared to the onset of instability. In many cases of interest the problem of instabilities
can be suppressed. On the other hand, the existence of this instability is due solely to the
inelasticity of collisions and therefore is of great interest in itself as a signature of collisional
dissipation.

4. Hydrodynamics and linear response

For the hard-sphere fluid with elastic collisions there is a clear separation of timescales
between microscopic (or kinetic) excitations which occur on the timescale of the inverse
collision frequency, and longer-timescale hydrodynamic phenomena. Generally, the latter
is characterized by timescales of the order of macroscopic spatial disturbances relative to
the mean free path. The hydrodynamic excitations dominate at long times as the system
approaches a homogeneous state and these timescales become very long compared to all other
microscopic excitations. The circumstances are somewhat more complicated for the case
of inelastic collisions due to the additional timescale for cooling. The cooling timescale is
incorporated in the reference state about which spatial perturbations are considered and occurs
for both the microscopic and hydrodynamic excitations. Thus, no matter how rapid the cooling
of the reference state, conditions for hydrodynamics still consist of the timescales for spatial
perturbations being long compared to all other microscopic perturbations. This distinction
between the dynamics of spatial perturbations and the cooling of the reference state has led to
some misconceptions about the existence of hydrodynamics for inelastic collisions. However,
detailed calculations with kinetic models (see the discussion below) show that the dynamics
of the reference state simply changes the timescale from t to s and the separation between
microscopic and hydrodynamic excitations is still preserved in these units.
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Linear response methods are important and effective many-body tools for the analysis of
hydrodynamics and related perturbations of the Gibbs state. Formally, one considers initial
states for the Liouville equation that have small deviations from the Gibbs state characterized by
the physical variables of interest. The average values of these observables are then calculated
from a formal solution to the Liouville equation. In this way it is possible to obtain expressions
for the energy and momentum fluxes in the macroscopic balance equations for mass, energy,
and momentum, to linear order in the spatial gradients of these systems (Fourier’s law for
thermal conduction, and Newton’s law for viscous dissipation). A similar analysis is possible
for inelastic collisions using the HCS as the analogue of the Gibbs reference state. The analysis
is somewhat more involved due to the time dependence of the reference state and the details
will be presented elsewhere. However, it is possible to illustrate the basic ideas here for the
special case of tagged-particle diffusion. In this case an additional particle (with label q0, v0)
is inserted among theN identical particles and identified for special consideration. The initial
distribution for the Liouville equation is taken to be a spatial perturbation of the HCS for the
entire system:

ρ(0) = ρhcs [1 + V δP (q0,0)] (4.1)

where P(x, 0) = 〈δ(x − q0)〉 is a given initial probability density for finding the tagged
particle at x, and δP (x, 0) is its deviation from the uniform probability density in the HCS.
The volume factor V is required by normalization of P(x, 0) to unity. Using this initial state a
formal solution to the Liouville equation can be found for calculatingP(x, t) = 〈δ(x−q0(t))〉
at later times. Using standard linear response methods and an expansion in small spatial
gradients it can be shown that P(r, t) obeys the generalized diffusion equation. The details of
the derivation will be given elsewhere and only the result quoted here:

∂tP (x, t)−D(t)∇2P(x, t) = 0 D(t) = 1

3

∫ t

0
dt ′ 〈v0(t) · v0(t

′); 0〉hcs . (4.2)

The function D(t) is given by the time integral of the tagged-particle velocity autocorrelation
function, averaged over the initial HCS. This is quite similar to the case of elastic collisions
for self-diffusion in the Gibbs state. In that case the correlation function is stationary and
depends only on the time difference. Then, D(t) approaches a constant for long times if
the velocity autocorrelation function is integrable, and the equation for P(x, t) becomes the
diffusion equation for long times. The diffusion equation, with constant diffusion coefficient
D, constitutes the hydrodynamic description for this process. It is approached exponentially
fast in time for elastic collisions.

The analysis here is somewhat more complex due to the cooling of the reference state.
However, this additional time dependence can be removed by use of the dimensionless
variables, leading to (again, the details will be given elsewhere)

∂sP
∗(r, s)−D∗(s)∇2P ∗(r, s) = 0 (4.3)

D∗(s) = 1

3

∫ s

0
dτ C(τ) C(τ) =

∫
d� u0 · e−L∗τ (u0ρ) (4.4)

where D∗(s) = D(t)/&2νc(t) and L is given by (3.4). Thus diffusion is recovered in terms of
the variable s rather than t , with the diffusion coefficient given by the Green–Kubo expression

D∗ = 1

3

∫ ∞

0
dτ C(τ). (4.5)

Alternatively, diffusion can be discussed in terms of the mean square displacement of the
tagged particle obtained in dimensionless form from the second moment of (4.3):

M∗(s) ≡
∫

dr r2P ∗(r, t) = 2

3

∫ s

0
dτ (s − τ)C(τ) → 2D∗s. (4.6)
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The last asymptotic result is the Einstein relation giving the diffusion coefficient in terms of
the mean square displacement at long times. Here, however, the mean square displacement
becomes linear in s rather than t .

The short-time behaviour of the velocity autocorrelation function can be obtained from
the leading term in a cumulant expansion:

C(τ) =
∫

d� u0 · e−L∗τ (u0ρ) → C(0)e−γ s (4.7)

where

γ = 2

3

∫
d� u0 · L∗(u0ρ) = 2

3

∫
d� u0 · L∗

(u0ρ)− ω∗.

If this approximation is assumed to persist at longer times, then D∗(s), M∗(s), and the D∗

have the approximations

D∗(s) → 1

2γ
(1 − e−γ s) M∗(s) → γ−1

[
s − γ−1(1 − e−γ s)

]
D∗ → (2γ )−1.

(4.8)

In the elastic limit these approximations are known to be quite good for all except the highest
densities near crystallization. The first equality shows that the approach to hydrodynamics,
i.e. diffusion in this case, is exponentially fast in s although logarithmic in real time. Similarly,
the mean square displacement shows the crossover from short-time free-particle motion to
diffusion on the same timescale.

5. Linear kinetic theory

Linear response theory expresses properties of interest in terms of equilibrium time correlation
functions, or for the case of inelastic collisions, HCS time correlation functions. A more
accurate evaluation than the cumulant expansion above can be obtained using linear kinetic
theory methods. To illustrate this, the velocity autocorrelation function is expressed in terms
of an appropriate reduced correlation function and evaluated using a Markov approximation
known to be good for elastic collisions. From the definition in (4.3), C(s) is written in the
equivalent form

C(s) =
∫

dx0 u0 ·2(1)(x0, s). (5.1)

Thus, formally, evaluation of the correlation function is reduced to taking an average in the
single-particle phase space of the tagged particle. The single-particle function 2(1)(x0, s) is
the first in a set that is similar to the reduced distribution functions of (2.11):

Φ(&)(x0, . . . , x&, s) ≡ N&−1
∫

dx&+1 · · · dxn e−L∗τ ρ∗
hcsu0 ≡ U(&)(0, . . . , &, s)u0. (5.2)

2(1) obeys the first equation of the same BBGKY hierarchy as in (2.10), which in the reduced
variables becomes

∂s2
(1)(u0, s) + ω∗ ∇u0 · (u02

(1)(u0, s)) =
∫

dx1 T (0, 1)2(2)(x0, x1, s). (5.3)

Here it has been recognized that 2(1) is independent of the tagged particle’s position due to
homogeneity of the reference HCS. A closed ‘kinetic equation’ is obtained if 2(2) can be
expressed in terms of 2(1). To see how this is possible, note that both 2(1) and 2(2) are
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formally linear maps of u0, as indicated in the second equality of (5.2). Assuming that U(1) is
invertible, a linear relationship between 2(2) and 2(1) is obtained:

2(2)(s) = U(2)(s)
[
U(1)(s)

]−1
2(1)(s). (5.4)

Substitution of this result into (5.3) gives the desired kinetic equation:

∂s2
(1)(u0, s) + ω∗ ∇u0 · (u02

(1)(u0, s)) = I (u0, s|2(1)) (5.5)

with the ‘collision operator’

I (u0, s|•) ≡
∫

dx1 T (0, 1)U(2)(1, 2, s)
[
U(1)(1, s)

]−1 • . (5.6)

Of course, this linear kinetic theory representation is still very formal since the operators
U(1) andU(2) entail analysis of the many-body problem. However, it is an appropriate starting
point for introducing approximations. For example, density expansions of these operators can
be performed for practical descriptions of dilute gases. Here, a Markovian approximation
is used. This assumes that the collision operator is approximately independent of time and
therefore can be evaluated at s = 0. In this limitU(1) andU(2) are simply related to the reduced
distribution function for the HCS and the collision operator becomes

I (u0|•) ≡ I (u0, s = 0|•) ≡
∫

dx1 T (1, 2)f ∗(2)
hcs (x0, x1)

[
f

∗(1)
hcs (x0)

]−1
• . (5.7)

For the special case of elastic collisions this approximation gives the familiar Enskog–Lorentz
kinetic equation for a dense gas. The diffusion coefficient is now given by

D∗ = 1

3

∫
du0 u0 · A(u0) (5.8)

where A is the solution to the linear integral equation

−ω∗ ∇u0 · (u0A) + I (u0|A) = u0f
∗(1)
hcs . (5.9)

These results are quite analogous to those from the kinetic theory for elastic collisions,
and polynomial expansion methods for solving such integral equations apply here as well.
An additional difficulty is encountered here, however, since the collision operator depends
explicitly on f ∗(2)

hcs and f ∗(1)
hcs which are not known. If it is assumed that velocity correlations

in f ∗(2)
hcs can be neglected, the problem reduces to a determination of f ∗(1)

hcs only. This has
been accomplished using a polynomial expansion of the Boltzmann equation [3, 4] and can
be taken as known to a good approximation. Recently, the results (5.8) and (5.9) with this
neglect of velocity correlations have been obtained from a Chapman–Enskog solution to the
Enskog–Lorentz equation, and the integral equation evaluated in a leading-order polynomial
expansion [5]. The corresponding results of the cumulant expansion are regained in this way
and have been shown to agree well with direct Monte Carlo simulation of the Enskog–Lorentz
equation and molecular dynamics simulations over a wide range of values for the restitution
coefficient α. A more detailed description of both the kinetic and diffusive excitations has been
obtained for a heavy tagged particle using the Boltzmann–Lorentz kinetic equation to derive
a corresponding Fokker–Planck equation [6]. The exact solution to the latter can be given if
one wishes to discuss in detail the transition of a given initial perturbation to the long-time
diffusive limit. Again, excellent agreement is obtained in comparison with both Monte Carlo
simulation of the kinetic equation (confirming the Fokker–Planck limit) and with molecular
dynamics (confirming the kinetic equation) [7].
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6. Non-linear kinetic theory

The derivation of the Boltzmann equation and related kinetic equations such as the revised
Enskog equation for the reduced distribution function f (1) has been considered in great detail
over the past forty years. While important fundamental questions remain about the precise
context in which these equations are valid [1], their accuracy for practical applications is well
established. The arguments leading to these equations would appear to hold as well for inelastic
collisions with some important exceptions (e.g., the phenomena of inelastic collapse). To date
there appears to be no specific evidence that the Boltzmann and Enskog equations have any
more limited scope for inelastic collisions than for elastic collisions, and they have provided
the basis for most information available about transport processes in granular media. As for
elastic collisions, explicit solutions to these equations have been studied primarily for states
close to the homogeneous state (equilibrium or HCS, respectively). A partial list of some
recent applications for hydrodynamics is provided for an overview:

• The Boltzmann equation has been solved approximately for the HCS using a polynomial
expansion about a Maxwellian [3,4]. Monte Carlo simulation of the Boltzmann equation
confirms the velocity scaling and form of the distribution function obtained in this
approximation [8], except for very large velocities. The asymptotic form for large
velocities has been discussed as well [4]. For the HCS, the Boltzmann and Enskog
solutions are simply related.

• The Chapman–Enskog method has been generalized to solve the Boltzmann equation to
leading order in spatial gradients relative to the HCS [9]. In this way the hydrodynamic
equations for a dilute inelastic gas have been derived to Navier–Stokes order and the
transport coefficients determined as explicit functions of the restitution coefficient. For
dense gases a similar analysis has been performed on the basis of the Enskog kinetic
equation [10]. The viscosity following from this analysis has been compared with that
from Monte Carlo simulation at low density showing good agreement over a wide range
of values for the restitution coefficient, confirming the validity of the Chapman–Enskog
method for inelastic collisions.

• Monte Carlo simulation of the Boltzmann equation has been used to study the stability
of the HCS. It has been shown that the initial stage of the instability can be described
accurately by the hydrodynamic equations derived from the Boltzmann equation [11].

• The single-particle distribution functions for a binary mixture of inelastic particles with
different size, mass, concentration, and inelasticities has been determined for the HCS
from the corresponding Boltzmann equation using a polynomial expansion [12]. An
interesting new feature for mixtures is the necessity of different ‘temperatures’ (defined
from the thermal velocity in the usual way, v2

0 = 2kBT /m, for each species). There is
no analogue of this for elastic collisions. Its consequences for transport in mixtures are
under investigation [14].

Access to more complex states is possible through Monte Carlo simulation [13] of the
Boltzmann or Enskog equations, and by kinetic models based on these equations [6]. The
kinetic models provide an excellent prediction of the transport coefficients for states near
equilibrium, yet are tractable as well in some cases far from equilibrium. At low density the
kinetic model has the form,

(∂t + v · ∇)f + ∇v · (Ff ) = −ν(f − fhcs)

where F = −νcωv is the drag force of (2.13), introduced there to represent the cooling
effects of inelastic collisions and having the same role here. The adjustable parameter ν
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is available to fit some chosen property of the Boltzmann equation (such as the viscosity).
This kinetic model is almost the same as the BGK model used for the Boltzmann equation
with elastic collisions, in the presence of a thermostat. In fact, if fhcs is approximated by a
local equilibrium distribution the analogy is complete: the isolated gas of inelastic particles is
equivalent to a gas of elastic particles in the presence of a thermostat. An example where this
observation is particularly useful is a simple gas in uniform shear flow whose velocity field is
given by ux = ay, uy = uz = 0. For elastic collisions an external thermostat Fext = −λv
is introduced to compensate for viscous heating and allow a steady state. There have been
extensive studies of the rheology of this flow using both Monte Carlo and kinetic model
methods. For inelastic collisions no external thermostat is required. Instead, the cooling force
F = −νcωv has the same effect of compensating for viscous heating to give the steady state.
Formally, the known results for elastic collisions can be transferred to the inelastic case by
the simple correspondence λ ↔ νcω [2]. Predictions of the rheology for steady shear flow
for the inelastic case based on the above kinetic model have been shown to be in very good
agreement with Monte Carlo simulation [15]. Similar results based on the Enskog equation
for a dense gas have been obtained, again in good agreement with simulation [16]. These and
other applications of kinetic models far from equilibrium provide strong support for their use
where the underlying kinetic equation becomes intractable.
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